
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 19 – Recursion (Continued)

Prof. Katherine Gibson

Prof. Jeremy Dixon

Based on slides from UPenn’s CIS 110, and from previous iterations of the course

www.umbc.edu

Last Class We Covered

• Recursion

– Recursion

• Recursion

• Stacks

• Parts of a recursive function:

– Base case: when to stop

– Recursive case: when to go (again)

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To gain a more solid understanding of recursion

• To explore what goes on “behind the scenes”

• To examine individual examples of recursion

– Binary Search

– Hailstone problem (Collatz)

– Fibonacci Sequence

• To better understand when it is best to use
recursion, and when it is best to use iteration

4

www.umbc.edu

Review of Recursion

www.umbc.edu

What is Recursion?

• Solving a problem using recursion means the
solution depends on solutions to smaller
instances of the same problem

• In other words, to define a function or
calculate a number by the repeated
application of an algorithm

 6

www.umbc.edu

Recursive Procedures

• When creating a recursive procedure, there
are a few things we want to keep in mind:

– We need to break the problem into
smaller pieces of itself

– We need to define a “base case” to stop at

– The smaller problems we break down into
need to eventually reach the base case

7

www.umbc.edu

“Cases” in Recursion

• A recursive function must have two things:

• At least one base case

– When a result is returned (or the function ends)

– “When to stop”

• At least one recursive case

– When the function is called again with new inputs

– “When to go (again)”

8

www.umbc.edu

Code Tracing: Recursion

www.umbc.edu

Stacks and Tracing

• Stacks will help us track what we are doing
when tracing through recursive code

• Remember, stacks are LIFO data structures

– Last In, First Out

• We’ll be doing a recursive trace of
the summation function

 10

www.umbc.edu

Summation Funcion

• The addition of a sequence of numbers

• The summation of a number is that number
plus all of the numbers less than it (down to 0)

– Summation of 5: 5 + 4 + 3 + 2 + 1

– Summation of 6: 6 + 5 + 4 + 3 + 2 + 1

• What would a recursive implementation look
like? What’s the base case? Recursive case?

 11

www.umbc.edu

Summation Function

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

12

Base case:
Don’t want to go below 0
Summation of 0 is 0

Recursive case:
Otherwise, summation is
num + summation(num-1)

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

fact(0)

fact(1)

fact(2)

fact(3)

fact(4)

main()

STACK

main()

def main():

 summ(4)

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

STACK

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)
num = 4

num: 4

STACK

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

num = 4

This is a local variable.
Each time the summ()

function is called, the new
instance gets its own

unique local variables.

STACK

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

num = 4

STACK

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

STACK

summ(2)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num = 1

num: 1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 1

num = 0

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 1

num = 0

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 1

num = 0

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 0

return 0

return 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

POP!

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num +
 summ(num-1)

num: 1

return 1 + 0 (= 1)

return 1

num = 1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()

POP!

POP!

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 2

num = 2

num = 4

return 2 + 1 (= 3)

return 3

STACK

summ(2)

summ(3)

summ(4)

main()

POP!

POP!

POP!

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

num: 3

num = 3

num = 4

return 3 + 3 (= 6)

return 6

STACK

summ(3)

summ(4)

main()

POP!

POP!

POP!

POP!

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 return num + summ(num-1)

main()

def main():

 summ(4)

num: 4

num = 4

return 4 + 6 (=10)

return 10

STACK

summ(4)

main()

POP!

POP!

POP!

POP!

POP!

www.umbc.edu

STACK

main()

main()

def main():

 summ(4)

POP!

POP!

POP!

return None

return None

POP!

POP!

POP!

www.umbc.edu

STACK

POP!

POP!

POP!

return control

POP!

POP!

POP!

The stack is empty!

www.umbc.edu

Returning and Recursion

www.umbc.edu

Returning Values

• If your goal is to return a final value

– Every recursive call must return a value

– You must be able to pass it “back up” to main()

– In most cases, the base case should return as well

• Must pay attention to what happens at the
“end” of a function.

30

www.umbc.edu

def summ(num):

 if num == 0:

 return 0

 else:

 num + summ(num-1)

main()

def main():

 summ(4)

num: 4

def summ(num):

 if num == 0:

 return 0

 else:

 num + summ(num-1)

num: 3

num = 3

def summ(num):

 if num == 0:

 return 0

 else:

 num + summ(num-1)

num: 2 num = 2

num = 4

def summ(num):

 if num == 0:

 return 0

 else:

 num + summ(num-1)

num: 1

num = 0

def summ(num):

 if num == 0:

 return 0

 else:

 num + summ(num-1)

num: 0

num = 1

Does this work? What’s wrong? STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

Hailstone Example

www.umbc.edu

The Hailstone Problem

• Simulating the up and
down movement of a
hailstone in a storm

• The problem is actually
known as the “Collatz
Conjecture”

33

comic courtesy of xkcd.com

www.umbc.edu

Rules of the Collatz Conjecture

• Three rules to govern how it behaves
– If the current height is 1, quit the program

– If the current height is even, cut it in half (divide by 2)

– If the current height is odd, multiply it by 3, then add 1

• This process has also been called HOTPO

– Half Or Triple Plus One

34

www.umbc.edu

Implementation

• It is possible to implement this process
using a while loop

• Can you think of another way to implement it?

• Recursively!

35

www.umbc.edu

Designing our Recursive Function

• What is our base case?

– When the Height is 1

• What is our recursive case?

– We have two! What are they?

– Height is even: divide by 2

– Height is odd: multiply by 3 and add 1

 36

www.umbc.edu

Exercise

• Create a function hail() that takes in a
number and prints out the height of the
hailstone at each point in time

• Important considerations:

– What do we check first? Base or recursive case?

– Is this function returning anything? Why or why not?

37

www.umbc.edu

Exercise Details

• Rules for function behavior
– If the current height is 1, quit the program

– If the current height is even, cut it in half (divide by 2)

– If the current height is odd, multiply it by 3, then add 1

• Create a function hail() that

– Takes in a number

– Prints out the height of the hailstone each time

38

www.umbc.edu

Binary Search

www.umbc.edu

Searching

• Given a list of sorted elements (e.g., words),
find a specific word as quickly as possible

• We could start from the beginning and iterate
through the list until we find it

– But that could take a long time!

40

www.umbc.edu

Binary Search

• Uses a “divide and conquer” approach

• Go to the middle, and compare the element
there to the one we’re looking for

– If it’s larger, we know it’s not in the last half

– If it’s smaller, we know it’s not in the first half

– If it’s the same, we found it!

41

www.umbc.edu

Binary Search Example

42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find "J"

A B C D E F G H I J K L M N O P Q R S T U V W X

www.umbc.edu

Binary Search Example

43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find “V"

A B C D E F G H I J K L M N O P Q R S T U V W X

www.umbc.edu

Binary Search

• Can be implemented using a while loop

– But much more common to use recursion

• What is the base case?

• What is the recursive case?

44

www.umbc.edu

Recursion vs Iteration

www.umbc.edu

Recursion and Iteration

• Both are important

– All modern programming languages support them

– Some problems are easy using one and difficult
using the other

• How do you decide which to use?

46

www.umbc.edu

Use Iteration When…

• Speed and efficiency is an issue

– Iteration doesn’t push things onto the stack

• The problem is an obvious fit for iteration

– Processing every element of a list (or 2D list)

47

www.umbc.edu

Use Recursion When…

• Speed is not an issue

• The data being processed is recursive

– A hierarchical data structure

• A recursive algorithm is obvious

• Clarity and simplicity of code is important

48

www.umbc.edu

Fibonacci Sequences

www.umbc.edu

Fibonacci Sequence

• Number series

• Starts with 0 or 1

• Next number is found by adding the previous
two numbers together

• Pattern is repeated over and over (and over…)

50

www.umbc.edu

Fibonacci Sequence

• Starts with 0, 1, 1

• Next number is …?

51

0 5 1 1 2 3 8 13 21 34 55

89 144 233 377 610 … 987

www.umbc.edu

Recursively Implement Fibonacci

• The formula for a number in the sequence:

F(n) = F(n-1) + F(n-2)

• What is our base case?

• What is our recursive case?

• How would we code this up?

52

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

• Project 1 is out

– Due by Monday, April 18th at 8:59:59 PM

– Do NOT procrastinate!

• Next Class: Modules

54

